
Appendix I. An Implementation on Unicorn3 Parsing System1

/*2 Appendix I is an implementation of the proposed grammar on the unicorn3 parsing
system.3 Interpretation of Semantic Representations are:

Given a content consisting of [REL[CASE α] ϕ] and [ARG ψ], the variable that the lambda
binds a free occurrence of in ψ in computing {x[CASE α] | ψ} ∈ ϕ (equivalently, ϕ(λx[CASE

α][ψ])) is the one that is case-registered as the same as the feature REL whose value is ϕ. If
the case value is QUAN, as in the content consisting of [RELQUAN ϕ] and [ARG ψ] then the
computation is {X | (X, {xQUAN | ψ}) ∈ ϕ}.

I have tested the implementation, and the implementation works, as explained in the main text.
*/

% 1. Rules
% 1.1. Sentence Rule
/* This phrase rule defines an object of the sort of [MAJ v] and [VFORM finite] and [COMPS
end] as a sentence. */
x0 x1:
<x0 maj>=s4
<x0 head>=<x1 head>
<x0 comps>=<x1 comps>
<x0 hd_arg_st>=<x1 hd_arg_st>
<x0 content>=<x1 content>
<x1 maj>=v
<x1 head vform>=finite
<x1 comps>=end.

% 1.2. Phrase Rules
/* There are three phrase rules in the grammar. All the Phrase rules share the scheme of x0
x1 x2: */

define Head_Feature_Principle_of_Phrase:
<x0 maj>=<x2 maj>
<x0 head>=<x2 head>
<x0 hd_arg_st>=<x2 hd_arg_st>.

define Non_Head_Daughter_Comps_Saturated:

1 Unicorn3 was developed at the University of Illinois at Urbana-Champaign.

2 The parser ignores all the letters that are to the right of % that are on the same line as %,
and all the letters between /* and */.

3 Unicorn3 cannot have a typed-feature theory written.

4 Unicorn3 cannot have features typed. MAJ is not a head feature in this implementation.
If it were, then the sentence rule would be inconsistent.

/* The COMPS of the non-head daughter are “saturated”. */
<x1 comps>=end.

define Content_of_Argument_Predicate_Phrase:
/* If the non-head daughter works as an argument, then the content of the entire phrase that
the non-head daughter adjoins to structure-shares with that of the head daughter. */
<x0 content>=<x2 content>.

define Comp_Head_Phrase:
<x2 comps first>=[]
<x1>=<x2 comps first>
<x0 comps>=<x2 comps rest>.

%1.2.1. COMP-HEAD PHRASE
/* The complement-head-phrase rule consists of the descriptions that refer to the definitions
above. */
x0 x1 x2:
Head_Feature_Principle_of_Phrase
Non_Head_Daughter_Comps_Saturated
Comp_Head_Phrase
Content_of_Argument_Predicate_Phrase.

define Adjunct_Head_Phrase:
<x0 comps>=<x2 comps>
<x1 head mod>=[]
<x2>=<x1 head mod>.

%1.2.2. ARGUMENT/ADJUNCT-HEAD PHRASE
/* The non-head daughter serves as an argument of the head daughter semantically, and yet,
is an adjunct to the head daughter. */
x0 x1 x2:
Head_Feature_Principle_of_Phrase
Non_Head_Daughter_Comps_Saturated
Adjunct_Head_Phrase
Content_of_Argument_Predicate_Phrase.

define Content_of_Nonargument_Predicate_Phrase:
<x0 content>=<x1 content>.

%1.2.3. ADJUNCT-HEAD PHRASE
/* The adjunct-head phrase is more specifically a non-argument-and-adjunct head phrase.
That is, the non-head daughter does not serve as an argument of the constituent semantically,
and is an adjunct to the constituent. */
x0 x1 x2:
Head_Feature_Principle_of_Phrase
Non_Head_Daughter_Comps_Saturated
Adjunct_Head_Phrase
Content_of_Nonargument_Predicate_Phrase.

% 2. LEXICON

% 2.1. CASE MORPHEME
define Case:
<maj>=k
<comps first maj>=n
<comps rest>=end.

define Nom:
<head mod maj>=v
<head mod head vform>=finite
<head kform>=nom.

% 2.1.1. Typical Nominative Morpheme
Word ga:
Case
Nom
<head mod hd_arg_st rel_nom>=<comps first content>.

% 2.1.2. “Topic-like” Nominative Morpheme
Word ga:
Case
Nom
<content arg>=<head mod content>
<content rel_nom_or_acc_or_gen>=<comps first content>.

define Acc:
<head mod maj>=v
<head kform>=acc.

% 2.1.3. Accusative Morpheme
Word o:
Case
Acc
<head mod hd_arg_st rel_acc>=<comps first content>.

define Gen:
<head mod maj>=n
<head kform>={nom acc gen}.

% 2.1.4. Genitive Morpheme
Word no:
Case
Gen
<content arg>=<head mod content>
<content rel_nom_or_acc_or_gen >=<comps first content>.

% 2.2. VERB
define finite:
<head mod>=no
<head vform>=finite.

define Verb:
<maj>=v
<comps>=end
<content>=<hd_arg_st>..

% 2.2.1. INTRANSITIVE VERB
Word neru:

 Finite
 Verb
 <hd_arg_st arg>=sleep_xn_. % sleep’(xNOM)

 % 2.2.2. TRANSITIVE VERB
 Word taberu:
 Finite
 Verb
 <hd_arg_st arg>=eat_ya__xn_. % (eat’(yACC))(xNOM)

% 2.3. NOUN
define Noun:
<maj>=n
<comps>=end
<head mod>=no
<content>=<hd_arg_st>
<content rel_q>=some_. % some’ = {(X, Y) | X ∩ Y ≠ ∅}.

 % 2.3.1. John

Word zyon:
Noun

 <content arg>=John_xq_. % John’(xQUAN)

 % 2.3.2. someone’s child
 Word kodomo:
 Noun
 <content arg>=child_xq_and_r_xq__yg_. % child’(xQUAN) & R(xQUAN)(yGEN)

 % 2.3.3. someone’s cake
 Word keeki:
 Noun
 <content arg>=cake_xq_and_r_xq__yg_. % cake’(xQUAN) & R(xQUAN)(yGEN)

	Appendix I. An Implementation on Unicorn3 Parsing System

