Appendix |. An Implementation on Unicorn3 Parsing System*

/*2 Appendix | is an implementation of the proposed grammar on the unicorn3 parsing
system.? Interpretation of Semantic Representations are:

Given a content consisting of [RELI*(% ¢] and [ARG], the variable that the lambda
binds a free occurrence of in y in computing {x[“** | y} e ¢ (equivalently, p(Ax!AE
o‘][\If])) iIsthe one that is case-registered as the same as the feature REL whose valueis o. If
the case value is QUAN, as in the content consisting of [REL?VAN ¢] and [ARG] then the
computation is{X | (X, {x°"*N | y}) € o}.

| have tested the implementation, and the implementation works, as explained in the main text.
*/

% 1. Rules

% 1.1. Sentence Rule

[* This phrase rule defines an object of the sort of [MAJV] and [VFORM finite] and [COMPS
end] as a sentence. */

X0 > x1.

<x0 magj>=s"

<x0 head>=<x1 head>

<x0 comps>=<x1 comps>

<x0 hd_arg_st>=<x1 hd_arg_st>
<x0 content>=<x1 content>

<x1 mag>=v

<x1 head vform>=finite

<x1 comps>=end.

% 1.2. Phrase Rules
[* There are three phrase rules in the grammar. All the Phrase rules share the scheme of X0 2>
X1 x2: */

define Head Feature Principle of Phrase:
<x0 mgj>=<x2 magj>

<x0 head>=<x2 head>

<x0 hd_arg_st>=<x2 hd_arg_st>.

define Non_Head Daughter Comps_Saturated:

! Unicorn3 was developed at the University of Illinois at Urbana-Champaign.

% The parser ignores all the letters that are to the right of % that are on the same line as %,
and all the letters between /* and */.

% Unicorn3 cannot have a typed-feature theory written.

* Unicorn3 cannot have features typed. MAJis not a head feature in this implementation.
If it were, then the sentence rule would be inconsistent.

[* The COMPS of the non-head daughter are “saturated”. */
<x1 comps>=end.

define Content_of Argument_Predicate Phrase:

/* If the non-head daughter works as an argument, then the content of the entire phrase that
the non-head daughter adjoins to structure-shares with that of the head daughter. */

<x0 content>=<x2 content>.

define Comp_Head Phrase:
<x2 comps first>=[]
<x1>=<x2 comps first>

<x0 comps>=<x2 comps rest>.

%1.2.1. COMP-HEAD PHRASE

/* The complement-head-phrase rule consists of the descriptions that refer to the definitions
above. */

X0 2> x1 x2:

Head Feature Principle of Phrase

Non_Head Daughter_ Comps_Saturated

Comp_Head Phrase

Content_of Argument_Predicate Phrase.

define Adjunct_Head_Phrase:
<x0 comps>=<x2 comps>
<x1 head mod>=[]
<x2>=<x1 head mod>.

%1.2.2. ARGUMENT/ADJUNCT-HEAD PHRASE

/* The non-head daughter serves as an argument of the head daughter semantically, and yet,
is an adjunct to the head daughter. */

X0 =2 x1 x2:

Head Feature Principle of Phrase

Non_Head Daughter Comps_Saturated

Adjunct_Head Phrase

Content_of Argument_Predicate Phrase.

define Content_of Nonargument_Predicate Phrase:
<x0 content>=<x1 content>.

%1.2.3. ADJUNCT-HEAD PHRASE

[* The adjunct-head phrase is more specifically a non-argument-and-adjunct head phrase.
That is, the non-head daughter does not serve as an argument of the constituent semantically,
and is an adjunct to the constituent. */

X0 = x1x2:

Head Feature Principle_of Phrase

Non_Head Daughter Comps_Saturated

Adjunct_Head Phrase

Content_of Nonargument_Predicate_Phrase.

% 2. LEXICON

% 2.1. CASE MORPHEME
define Case:

<maj>=k

<comps first mgj>=n
<comps rest>=end.

define Nom:

<head mod maj>=v

<head mod head vform>=finite
<head kform>=nom.

% 2.1.1. Typical Nominative Morpheme

Word ga

Case

Nom

<head mod hd_arg_st rel_nom>=<comps first content>.

% 2.1.2. “Topic-like” Nominative Morpheme

Word ga

Case

Nom

<content arg>=<head mod content>

<content rel_nom_or_acc_or_gen>=<comps first content>.

define Acc:
<head mod maj>=v
<head kform>=acc.

% 2.1.3. Accusative Morpheme

Word o:

Case

Acc

<head mod hd_arg_st rel_acc>=<comps first content>.

define Gen:
<head mod maj>=n
<head kform>={ hom acc gen}.

% 2.1.4. Genitive Morpheme

Word no:

Case

Gen

<content arg>=<head mod content>

<content rel_nom_or_acc_or_gen >=<comps first content>.

% 2.2. VERB

define finite:

<head mod>=no
<head vform>=finite.

define Verb:

<mag>=v

<comps>=end
<content>=<hd_arg_st>..

% 2.2.1. INTRANSITIVE VERB
Word neru:

Finite
Verb
<hd_arg_st arg>=dleep xn_.

% 2.2.2. TRANSITIVE VERB
Word taberu:

Finite

Verb

<hd arg starg>=eat_ya xn_.

% 2.3. NOUN

define Noun:

<mg>=n
<comps>=end

<head mod>=no
<content>=<hd_arg_st>

<content rel_g>=some .

% 2.3.1. John

Word zyon:

Noun

<content arg>=John_xq .

% 2.3.2. someone' s child
Word kodomo:
Noun

<content arg>=child_xq _and_r_ xq_vyg .

% 2.3.3. someone’'s cake
Word keeki:
Noun

<content arg>=cake xq and r xq_vyg .

NOM
)

% Sleep’ (X

% (eat’ (y*) (x"M)

% some ={(X,Y)|XNY =J}.

% John' (x2UAN)

% Ch||d1 (XQUAN) & R(XQUAN)(yGEN)

% cake (xOVAM) & RN (y®)

	Appendix I. An Implementation on Unicorn3 Parsing System

